

The commercialisation of UCG

Dr Dermot Roddy Chief Technology Officer Five-Quarter Energy Holdings Ltd

droddy@five-quarter.com www.five-quarter.com

Scale of the UK opportunity

c. 10,000 billion tonnes of sub-sea coal in UK sector of the North Sea

[J L Knight et al., "Coal thickness distributions on the UK continental shelf", Geological Society, London, Special Publications 1996, v. 109, pp 43-57.]

Scale of the global opportunity

Which sector to target?

Business niche?

- Owner-operator of a few assets?
- International licensor of technology?
- Roving consultancy?
- Some combination of the above?

A diversity of business models with different implications.

Right syngas for chosen sector?

Source: G R Couch, Underground Coal Gasification, IEA Clean Coal Centre

The right coal for the job?

The right coal for the job?

Some coals are easier to deal with than others.

Have you got good separation from sensitive aquifers?

Where is your competitive edge? (and is it protected?)

- Why should someone invest several £100m in your company?
- More gas with less drilling?
- Better syngas quality? Lower gas-processing costs?
- A more environmentally robust proposition?
- A more reliable process?
- Confidence in commercial capability?

Why do demonstrator projects?

- To burn a lot of money???
- To show that you have the right coal for the job.
- To demonstrate that your competitive edge is real.
- To gather data needed for designing the commercial-scale plant.
- To win the confidence of investors, customers, regulators & communities.

NB: Raising money to build a plant that is not designed to make money is hard work!

Scale of investment & risk

US shale gas is now six times lower cost than Asia, leading to a marked difference in Ethylene cost (\$316/ton vs. \$1,717/ton)

competitiv advantage in product manufacture

Plastics Resins Fibers **Textiles** Elastomers Rubbers Solvents Coatings **Dyes & Pigments** Adhesives Chemicals **Other Consumer** Products 12

Five

Gas-to-wire

Mode of running?

Power Purchase Agreement?

Similar concept to IGCC-CCS

CCS Deployment Timeline (to 2025)

20 Mt CO2 CCS could be realised by 2025 (c.a. 3-4 GW equivalent)

Greenhouse gas issues

- What % of CO₂ is captured from raw syngas?
- Starting when?
- Where to store it? When?
- Who is accountable for CO₂ storage facilities?
- Mandatory or voluntary?
- GHG emissions arising in the gas processing plant itself?
- Carbon footprint of your utility supplies eg electricity for the ASU?
- GHG emissions during construction?
- Fate of CO₂ arising from use of the gases that you sell to others?
- Some may wish to draw the boundary much wider than your facility and compare with alternative routes to various end products from different raw materials

Products from CO₂

Figure 2: Estimation of future CO, utilisation potential: technology map

SHE management topics (part of licence-to-operate)

Air separation unit
Auditing
Borehole design
Borehole integrity
Borehole integrity testing
COMAH case
Commissioning
Control of plant modifications
Control of drilling
Decommissioning of boreholes and cavities
Demonstrator unit
Dispensations
Effluent and waste treatment
Emergency preparedness
Emergency shutdown of DGW [®] reaction
Engineering/maintenance procedures
Engineering standards
Environmental impact of drilling
Fire protection
Gaseous emissions
Groundwater contamination
Hazard studies and design reviews
Inspection and testing of pressure vessels
Instrumented protection systems
Isolation of equipment for maintenance
Job handover processes
Layers of protection analysis (LOPA)

Legislation
Liabilities
Mitigating operational risks during DGW®
operations
Monitoring
Multilayer controls
Natural gas and methane
Occupational health
Operating procedures
Overhauls
Pipelines
Pressure relief
Prior to drilling
Regulatory authorities
Reporting
SHE culture
Site selection
Startup and shutdown procedures
Storing CO ₂ in DGW [®] cavities
Subsidence
Syngas
Tar formation and recovery
Technical safety case
Transport logistics
Well engineering

The commercialisation of UCG

Dr Dermot Roddy Chief Technology Officer Five-Quarter Energy Holdings Ltd

droddy@five-quarter.com www.five-quarter.com